1. Given the sets $A=\{1,2,3\}, B=\{3,4\}, C=\{4,5,6\}$, then $A \cup(B \cap C)$ is
(a) $\{3\}$
(b) $\{1,2,3,4\}$
(c) $\{1,2,4,5\}$
(d) $\{1,2,3,4,5,6\}$
2. If A and B are any two sets, then $A \cup(A \cap B)$ is equal to
(a) A
(b) B
(c) A^{c}
(d) B^{C}
3. If A and B are two given sets, then $A \cap(A \cap B)^{c}$ is equal to
(a) A
(b) B
(c) ϕ
(d) $A \cap B^{C}$
4. If the sets A and B are defined as
$A=\left\{(x, y): y=\frac{1}{x}, 0 \neq x \in R\right\}$
$B=\{(x, y): y=-x, x \in R\}$, then
(a) $\mathrm{A} \cap \mathrm{B}=\mathrm{A}$
(b) $\mathrm{A} \cap \mathrm{B}=\mathrm{B}$
(c) $\mathrm{A} \cap \mathrm{B}=\phi$
(d) None of these
5. Let $A=[x: x \in R,|x|<1] ; B=[x: x \in R,|x-1| \geq 1]$ and $A \cup B=R-D$, then the set D is
(a) $[x: 1<x \leq 2]$
(b) $[x: 1 \leq x<2]$
(c) $[x: 1 \leq x \leq 2]$
(d) None of these
6. Let R be a reflexive relation on a set A and I be the identity relation on A. Then
(a) $R \subset 1$
(b) $I \subset R$
(c) $R=1$
(d) None of these
7. Let $A=\{1,2,3,4\}$ and R be a relation in A given by $R=\{(1,1),(2,2),(3,3),(4,4),(1,2),(2,1),(3$, 1), $(1,3)\}$.

Then R is
(a) Reflexive
(b) Symmetric
(c) Transitive
(d) An equivalence relation
8. An integer m is said to be related to another integer n if m is a multiple of n. Then the relation is
(a) Reflexive and symmetric
(b) Reflexive and transitive
(c) Symmetric and transitive
(d) Equivalence relation
9. If the coefficient of x^{7} in $\left(a x^{2}+\frac{1}{b x}\right)^{11}$ is equal to the coefficient of x^{-7} in $\left(a x-\frac{1}{b x^{2}}\right)^{11}$, then $a b=$
(a) 1
(b) $1 / 2$
(c) 2
(d) 3
10. If the coefficient of x in the expansion of $\left(x^{2}+\frac{k}{x}\right)^{5}$ is 270 , then $k=$
(a) 1
(b) 2
(c) 3
(d) 4
11. $\frac{d}{d x}\left(\tan ^{-1} \frac{\cos x}{1+\sin x}\right)=$
(a) $-\frac{1}{2}$
(b) $\frac{1}{2}$
(c) -1
(d) 1
12. $\frac{d}{d x}\left[\cos \left(1-x^{2}\right)^{2}\right]=$
(a) $-2 x\left(1-x^{2}\right) \sin \left(1-x^{2}\right)^{2}$
(b) $-4 x\left(1-x^{2}\right) \sin \left(1-x^{2}\right)^{2}$
(c) $4 x\left(1-x^{2}\right) \sin \left(1-x^{2}\right)^{2}$
(d) $-2\left(1-x^{2}\right) \sin \left(1-x^{2}\right)^{2}$
13. $\frac{d}{d x}\left(x^{2} \sin \frac{1}{x}\right)=$
(a) $\cos \left(\frac{1}{x}\right)+2 x \sin \left(\frac{1}{x}\right)$
(b) $2 x \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right)$
(c) $\cos \left(\frac{1}{x}\right)-2 x \sin \left(\frac{1}{x}\right)$
(d) None of these
14. If $y=\cos \left(\sin x^{2}\right)$, then at $x=\sqrt{\frac{\pi}{2}}, \frac{d y}{d x}=$
(a) -2
(b) 2
(c) $-2 \sqrt{\frac{\pi}{2}}$
(d) 0
15. If $y=\sin ^{-1}\left(x \sqrt{1-x}+\sqrt{x} \sqrt{1-x^{2}}\right)$, then $\frac{d y}{d x}=$
(a) $\frac{-2 x}{\sqrt{1-x^{2}}}+\frac{1}{2 \sqrt{x-x^{2}}}$
(b) $\frac{-1}{\sqrt{1-x^{2}}}-\frac{1}{2 \sqrt{x-x^{2}}}$
(c) $\frac{1}{\sqrt{1-x^{2}}}+\frac{1}{2 \sqrt{x-x^{2}}}$
(d) None of these
16. If $x^{3}+8 x y+y^{3}=64$, then $\frac{d y}{d x}=$
(a) $-\frac{3 x^{2}+8 y}{8 x+3 y^{2}}$
(b) $\frac{3 x^{2}+8 y}{8 x+3 y^{2}}$
(c) $\frac{3 x+8 y^{2}}{8 x^{2}+3 y}$
(d) None of these
17. If $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$, then $\frac{d y}{d x}=$
(a) $-\frac{a x+h y+g}{h x-b y+f}$
(b) $\frac{a x+h y+g}{h x-b y+f}$
(c) $\frac{a x-h y-g}{h x-b y-f}$
(d) None of these
18. $\cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)=$
(a) $\frac{7 \pi}{6}$
(b) $\frac{5 \pi}{6}$
(c) $\frac{\pi}{6}$
(d) None of these
19. The value of $\sin \cot ^{-1} \tan \cos ^{-1} x$ is equal to
(a) x
(b) $\frac{\pi}{2}$
(c) 1
(d) None of these
20. $\sin ^{-1} \frac{\sqrt{x}}{\sqrt{x+a}}$ is equal to
(a) $\cos ^{-1} \sqrt{\frac{x}{a}}$
(b) $\operatorname{cosec}^{-1} \sqrt{\frac{x}{a}}$
(c) $\tan ^{-1} \sqrt{\frac{x}{a}}$
(d) None of these
21. If $\tan \theta=\frac{-4}{3}$, then $\sin \theta=$
(a) $-4 / 5$ but not $4 / 5$
(b) $-4 / 5$ or $4 / 5$
(c) $4 / 5$ but not $-4 / 5$
(d) None of these
22. If $\sin \theta=-\frac{1}{\sqrt{2}}$ and $\tan \theta=1$, then θ lies in which quadrant
(a) First
(b) Second
(c) Third
(d) Fourth
23. If $\sin \theta=\frac{-4}{5}$ and θ lies in the third quadrant, then $\cos \frac{\theta}{2}=$
(a) $\frac{1}{\sqrt{5}}$
(b) $-\frac{1}{\sqrt{5}}$
(c) $\sqrt{\frac{2}{5}}$
(d) $-\sqrt{\frac{2}{5}}$
24. If $\sin (\alpha-\beta)=\frac{1}{2}$ and $\cos (\alpha+\beta)=\frac{1}{2}$, where α and β are positive acute angles, then
(a) $\alpha=45^{\circ}, \beta=15^{\circ}$
(b) $\alpha=15^{\circ}, \beta=45^{\circ}$
(c) $\alpha=60^{\circ}, \beta=15^{\circ}$
(d) None of these
25. If $\tan \theta=-\frac{1}{\sqrt{10}}$ and θ lies in the fourth quadrant, then $\cos \theta=$
(a) $1 / \sqrt{11}$
(b) $-1 / \sqrt{11}$
(c) $\sqrt{\frac{10}{11}}$
(d) $-\sqrt{\frac{10}{11}}$
26. If $x+y+z=180^{\circ}$, then $\cos 2 x+\cos 2 y-\cos 2 z$ is equal to
(a) $4 \sin x \cdot \sin y \cdot \sin z$
(b) $1-4 \sin x \cdot \sin y \cdot \cos z$
(c) $4 \sin x \cdot \sin y \cdot \sin z-1$
(d) $\cos A \cdot \cos B \cdot \cos C$
27. If $\alpha+\beta+\gamma=2 \pi$, then
(a) $\tan \frac{\alpha}{2}+\tan \frac{\beta}{2}+\tan \frac{\gamma}{2}=\tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$
(b) $\tan \frac{\alpha}{2} \tan \frac{\beta}{2}+\tan \frac{\beta}{2} \tan \frac{\gamma}{2}+\tan \frac{\gamma}{2} \tan \frac{\alpha}{2}=1$
(c) $\tan \frac{\alpha}{2}+\tan \frac{\beta}{2}+\tan \frac{\gamma}{2}=-\tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$
(d) None of these
28. If $A+B+C=\pi$, then $\cos 2 A+\cos 2 B+\cos 2 C=$
(a) $1+4 \cos \mathrm{~A} \cos \mathrm{~B} \sin \mathrm{C}$
(b) $-1+4 \sin A \sin B \cos C$
(c) $-1-4 \cos A \cos B \cos C$
(d) None of these
29. If $A+B+C=180^{\circ}$, then $\frac{\sin 2 A+\sin 2 B+\sin 2 C}{\cos A+\cos B+\cos C-1}=$
(a) $8 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$
(b) $8 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}$
(C) $8 \sin \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}$
(d) $8 \cos \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$
30. A, B, C are the angles of a triangle, then $\sin ^{2} A+\sin ^{2} B+\sin ^{2} C-2 \cos A \cos B \cos C=$
(a) 1
(b) 2
(c) 3
(d) 4
31. Forces of 1,2 unit act along the lines $x=0$ and $y=0$. The equation of the line of action of the resultant is
(a) $y-2 x=0$
(b) $2 y-x=0$
(c) $y+x=0$
(d) $y-x=0$
32. If N is resolved in two components such that first is twice of other, the components are
(a) $5 \mathrm{~N}, 5 \sqrt{2} \mathrm{~N}$
(b) $10 \mathrm{~N}, 10 \sqrt{2} \mathrm{~N}$
(c) $\frac{\mathrm{N}}{\sqrt{5}}, \frac{2 \mathrm{~N}}{\sqrt{5}}$
(d) None of these
33. O is the circumcentre of $\triangle A B C$. If the forces P, Q and R acting along $O A, O B$, and $O C$ are in equilibrium then $\quad \mathrm{P}: \mathrm{Q}: \mathrm{R}$ is
(a) $\sin A: \sin B: \sin C$
(b) $\cos A: \cos B: \cos C$
(c) $a \cos A: b \cos B: c \cos C$
(d) $a \sec A: b \sec B: c \sec C$
34. Three forces P, Q and R acting on a particle are in equilibrium. If the angle between P and Q is double the angle between P and R, then P is equal to
(a) $\frac{Q^{2}+R^{2}}{R}$
(b) $\frac{Q^{2}-R^{2}}{Q}$
(c) $\frac{Q^{2}-R^{2}}{R}$
(d) $\frac{Q^{2}+R^{2}}{Q}$
35. Three forces P, Q, R are acting at a point in a plane. The angle between P, Q and Q, R are 150° and 120° respectively, then for equilibrium; forces P, Q, R are in the ratio
(a) $1: 2: 3$
(b) $1: 2: 3^{1 / 2}$
(c) $3: 2: 1$
(d) $(3)^{1 / 2: 2: 1}$
36. A couple is of moment G and the force forming the couple is P. If P is turned through a right angle, the moment of the couple thus formed is H . If instead, the force P are turned an angle α, then the moment of couple becomes
(a) $\mathrm{G} \sin \alpha-\mathrm{H} \cos \alpha$
(b) $\mathrm{H} \cos \alpha+\mathrm{G} \sin \alpha$
(c) $\mathrm{G} \cos \alpha+\mathrm{H} \sin \alpha$
(d) $\mathrm{H} \sin \alpha-\mathrm{G} \cos \alpha$
37. The resultant of the forces $4,3,4$ and 3 unit acting along the lines $A B, B C, C D$ and $D A$ of a square $A B C D$ of side ' a ' respectively is
(a) A force $5 \sqrt{2}$ through the centre of the square
(b) A couple of moment 7a
(c) A null force
(d) None of these
38. For which interval, the function $\frac{x^{2}-3 x}{x-1}$ satisfies all the conditions of Rolle's theorem
(a) $[0,3]$
(b) $[-3,0]$
(c) $[1.5,3]$
(d) For no interval
39. For the function $f(x)=e^{x}, a=0, b=1$, the value of c in mean value theorem will be
(a) $\log x$
(b) $\log (\mathrm{e}-1)$
(c) 0
(d) 1
40. Rolle's theorem is not applicable to the function $f(x)=|x|$ defined on $[-1,1]$ because
(a) f is not continuous on $[-1,1]$
(b) f is not differentiable on $(-1,1)$
(c) $f(-1) \neq f(1)$
(d) $f(-1)=f(1) \neq 0$
41. The direction cosines of a line equally inclined to three mutually perpendicular lines having direction cosines as $l_{1}, m_{1}, n_{1} ; l_{2}, m_{2}, n_{2}$ and l_{3}, m_{3}, n_{3} are
(a) $l_{1}+l_{2}+l_{3}, m_{1}+m_{2}+m_{3}, n_{1}+n_{2}+n_{3}$
(b) $\frac{l_{1}+l_{2}+l_{3}}{\sqrt{3}}, \frac{m_{1}+m_{2}+m_{3}}{\sqrt{3}}, \frac{n_{1}+n_{2}+n_{3}}{\sqrt{3}}$
(c) $\frac{I_{1}+I_{2}+I_{3}}{3}, \frac{m_{1}+m_{2}+m_{3}}{3}, \frac{n_{1}+n_{2}+n_{3}}{3}$
(d) None of these
42. A point (x, y, z) moves parallel to x-axis. Which of the three variable x, y, z remain fixed
(a) x
(b) y and z
(c) x and y
(d) z and x
43. If the direction cosines of a line are $\left(\frac{1}{c}, \frac{1}{c}, \frac{1}{c}\right)$, then
(a) $c>0$
(b) $\mathrm{c}= \pm \sqrt{3}$
(c) $0<c<1$
(d) $c>2$
44. The plane xoz divides the join of $(1,-1,5)$ and $(2$, $3,4)$ in the ratio $\lambda: 1$, then λ is
(a) - 3
(b) 3
(c) $-\frac{1}{3}$
(d) $\frac{1}{3}$
45. The co-ordinates of a point P are $(3,12,4)$ with respect to origin 0 , then the direction cosines of $O P$ are
(a) $3,12,4$
(b) $\frac{1}{4}, \frac{1}{3}, \frac{1}{2}$
(c) $\frac{3}{\sqrt{13}}, \frac{1}{\sqrt{13}}, \frac{2}{\sqrt{13}}$
(d) $\frac{3}{13}, \frac{12}{13}, \frac{4}{13}$
46. If the planes $x+2 y+k z=0$ and $2 x+y-2 z=0$ are at right angles, then the value of k is
(a) $-\frac{1}{2}$
(b) $\frac{1}{2}$
(c) -2
(d) 2
47. If z_{1}, z_{2}, z_{3} be three non-zero complex number, such that $z_{2} \neq z_{1}, a \neq\left|z_{1}\right|, b \neq z_{2} \mid$ and $c \neq z_{3} \mid$ suppose that $\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|=0$, then $\arg \left(\frac{z_{3}}{z_{2}}\right)$ is equal to
(a) $\arg \left(\frac{z_{2}-z_{1}}{z_{3}-z_{1}}\right)^{2}$
(b) $\arg \left(\frac{z_{2}-z_{1}}{z_{3}-z_{1}}\right)$
(c) $\arg \left(\frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right)^{2}$
(d) $\arg \left(\frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right)$
48. Let z and w be the two non-zero complex numbers such that $|z|=|w|$ and $\arg z+\arg w=\pi$. Then z is equal to
(a) w
(b) $-w$
(c) \bar{w}
(d) $-\bar{w}$
49. If $|z-25 i| \leq 15$, then $|\max \cdot \operatorname{amp}(z)-\min \cdot \operatorname{amp}(z)|=$
(a) $\cos ^{-1}\left(\frac{3}{5}\right)$
(b) $\pi-2 \cos ^{-1}\left(\frac{3}{5}\right)$
(c) $\frac{\pi}{2}+\cos ^{-1}\left(\frac{3}{5}\right)$
(d) $\sin ^{-1}\left(\frac{3}{5}\right)-\cos ^{-1}\left(\frac{3}{5}\right)$
50. If z_{1}, z_{2} and z_{3}, z_{4} are two pairs of conjugate complex numbers, then $\arg \left(\frac{z_{1}}{z_{4}}\right)+\arg \left(\frac{z_{2}}{z_{3}}\right)$ equals
(a) 0
(b) $\frac{\pi}{2}$
(c) $\frac{3 \pi}{2}$
(d) π
51. The differential equation of the family of parabolas with focus at the origin and the x-axis as axis is
(a) $y\left(\frac{d y}{d x}\right)^{2}+4 x \frac{d y}{d x}=4 y$
(b) $-y\left(\frac{d y}{d x}\right)^{2}=2 x \frac{d y}{d x}-y$
(c) $y\left(\frac{d y}{d x}\right)^{2}+y=2 x y \frac{d y}{d x}$
(d) $y\left(\frac{d y}{d x}\right)^{2}+2 x y \frac{d y}{d x}+y=0$
52. The differential equation of the family of curves for which the length of the normal is equal to a constant k, is given by
(a) $y^{2} \frac{d y}{d x}=k^{2}-y^{2}$
(b) $\left(y \frac{d y}{d x}\right)^{2}=k^{2}-y^{2}$
(c) $y\left(\frac{d y}{d x}\right)^{2}=k^{2}+y^{2}$
(d) $\left(y \frac{d y}{d x}\right)^{2}=k^{2}+y^{2}$
53. The solution of the differential equation $y-x \frac{d y}{d x}=a\left(y^{2}+\frac{d y}{d x}\right)$ is
(a) $y=c(x+a)(1+a y)$
(b) $y=c(x+a)(1-a y)$
(c) $y=c(x-a)(1+a y)$
(d) None of these
54. A particle moves in a straight line with a velocity given by $\frac{d x}{d t}=x+1$ (x is the distance described). The time taken by a particle to traverse a distance of 99 metre is
(a) $\log _{10} e$
(b) $2 \log _{e} 10$
(c) $2 \log _{10} \mathrm{e}$
(d) $\frac{1}{2} \log _{10} \mathrm{e}$
55. Solution of differential equation $x d y-y d x=0$ represents
(a) Rectangular hyperbola
(b) Straight line passing through origin
(c) Parabola whose vertex is at origin
(d) Circle whose centre is at origin
56. Integral curve satisfying $y^{\prime}=\frac{x^{2}+y^{2}}{x^{2}-y^{2}}, y(1)=2$ has the slope at the point $(1,0)$ of the curve, equal to
(a) $-5 / 3$
(b) -1
(c) 1
(d) $5 / 3$
57. How many numbers between 5000 and 10,000 can be formed using the digits $1,2,3,4,5,6,7,8,9$ each digit appearing not more than once in each number
(a) $5 x^{8} P_{3}$
(b) $5 \times{ }^{8} \mathrm{C}_{3}$
(c) $5!x^{8} P_{3}$
(d) $5!x^{8} C_{3}$
58. If x, y and r are positive integers, then
${ }^{x} C_{r}+{ }^{x} C_{r-1}{ }^{y} C_{1}+{ }^{x} C_{r-2}{ }^{y} C_{2}+\ldots \ldots .+{ }^{y} C_{r}=$
(a) $\frac{x!y!}{r!}$
(b) $\frac{(x+y)!}{r!}$
(c) ${ }^{x+y} C_{r}$
(d) ${ }^{x y} C_{r}$
59. If the angle of elevation of the top of tower at a distance 500 m from its foot is 30°, then height of the tower is
(a) $\frac{1}{\sqrt{3}}$
(b) $\frac{500}{\sqrt{3}}$
(c) $\sqrt{3}$
(d) $\frac{1}{500}$
60. For a man, the angle of elevation of the highest point of the temple situated east of him is 60°. On walking 240 metres to north, the angle of elevation is reduced to 30°, then the height of the temple is
(a) $60 \sqrt{6} \mathrm{~m}$
(b) 60 m
(c) $50 \sqrt{3} \mathrm{~m}$
(d) $30 \sqrt{6} \mathrm{~m}$
61. $\int \frac{d x}{1-\sin x}=$
(a) $x+\cos x+c$
(b) $1+\sin x+c$
(c) $\sec x-\tan x+c$
(d) $\sec x+\tan x+c$
62. If $\int(\sin 2 x-\cos 2 x) d x=\frac{1}{\sqrt{2}} \sin (2 x-a)+b$, then
(a) $\mathrm{a}=\frac{\pi}{4}, \mathrm{~b}=0$
(b) $\mathrm{a}=-\frac{\pi}{4}, \mathrm{~b}=0$
(c) $\mathrm{a}=\frac{5 \pi}{4}, \mathrm{~b}=$ any constant
(d) $\mathrm{a}=-\frac{5 \pi}{4}, \mathrm{~b}=$ any constant
63. The area in the first quadrant between $x^{2}+y^{2}=\pi^{2}$ and $y=\sin x$ is
(a) $\frac{\left(\pi^{3}-8\right)}{4}$
(b) $\frac{\pi^{3}}{4}$
(c) $\frac{\left(\pi^{3}-16\right)}{4}$
(d) $\frac{\left(\pi^{3}-8\right)}{2}$
64. The area bounded by the curves $y^{2}-x=0$ and $y-x^{2}=0$ is
(a) $\frac{7}{3}$
(b) $\frac{1}{3}$
(c) $\frac{5}{3}$
(d) 1
65. If $\int_{-1}^{4} f(x) d x=4$ and $\int_{2}^{4}(3-f(x)) d x=7$, then the value of $\int_{2}^{-1} f(x) d x$ is
(a) 2
(b) -3
(c) -5
(d) None of these
66. The directrix of the parabola $x^{2}-4 x-8 y+12=0$ is
(a) $x=1$
(b) $y=0$
(c) $x=-1$
(d) $y=-1$
67. The equation of the parabola with focus $(0,0)$ and directrix $x+y=4$ is
(a) $x^{2}+y^{2}-2 x y+8 x+8 y-16=0$
(b) $x^{2}+y^{2}-2 x y+8 x+8 y=0$
(c) $x^{2}+y^{2}+8 x+8 y-16=0$
(d) $x^{2}-y^{2}+8 x+8 y-16=0$
68. The eccentricity of the curve represented by the equation $x^{2}+2 y^{2}-2 x+3 y+2=0$ is
(a) 0
(b) $1 / 2$
(c) $1 / \sqrt{2}$
(d) $\sqrt{2}$
69. For the ellipse $25 x^{2}+9 y^{2}-150 x-90 y+225=0$ the eccentricity e=
(a) $2 / 5$
(b) $3 / 5$
(c) $4 / 5$
(d) $1 / 5$
70. The equation of the tangent parallel to $y-x+5=0$ drawn to $\frac{x^{2}}{3}-\frac{y^{2}}{2}=1$ is
(a) $x-y-1=0$
(b) $x-y+2=0$
(c) $x+y-1=0$
(d) $x+y+2=0$
71. Let E be the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and C be the circle $x^{2}+y^{2}=9$. Let P and Q be the points $(1,2)$ and $(2,1)$ respectively. Then
(a) Q lies inside C but outside E
(b) Q lies outside both C and E
(c) P lies inside both C and E
(d) P lies inside C but outside E
72. If α, β, γ are roots of equation $\mathrm{x}^{3}+\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$, then $\alpha^{-1}+\beta^{-1}+\gamma^{-1}=$
(a) a / c
(b) $-\mathrm{b} / \mathrm{c}$
(c) b / a
(d) c / a
73. If $\frac{2 x}{2 x^{2}+5 x+2}>\frac{1}{x+1}$, then
(a) $-2>x>-1$
(b) $-2 \geq x \geq-1$
(c) $-2<x<-1$
(d) $-2<x \leq-1$
74. If $a<0$ then the inequality $a x^{2}-2 x+4>0$ has the solution represented by
(a) $\frac{1+\sqrt{1-4 a}}{a}>x>\frac{1-\sqrt{1-4 a}}{a}$
(b) $x<\frac{1-\sqrt{1-4 a}}{a}$
(c) $x<2$
(d) $2>x>\frac{1+\sqrt{1-4 a}}{a}$
75. The two roots of an equation $x^{3}-9 x^{2}+14 x+24=0$ are in the ratio $3: 2$. The roots will be
(a) 6, 4, - 1
(b) $6,4,1$
(c) $-6,4,1$
(d) $-6,-4,1$
76. If $x=\sqrt{1+\sqrt{1+\sqrt{1+\ldots \ldots . . \text { to infinity }}}}$, then $x=$
(a) $\frac{1+\sqrt{5}}{2}$
(b) $\frac{1-\sqrt{5}}{2}$
(c) $\frac{1 \pm \sqrt{5}}{2}$
(d) None of these
77. For the equation $\left|x^{2}\right|+|x|-6=0$, the roots are
(a) One and only one real number
(b) Real with sum one
(c) Real with sum zero
(d) Real with product zero
78. If $a x^{2}+b x+c=0$, then $x=$
(a) $\frac{b \pm \sqrt{b^{2}-4 a c}}{2 a}$
(b) $\frac{-b \pm \sqrt{b^{2}-a c}}{2 a}$
(c) $\frac{2 c}{-b \pm \sqrt{b^{2}-4 a c}}$
(d) None of these
79. If the equations $2 x^{2}+3 x+5 \lambda=0$ and $x^{2}+2 x+3 \lambda=0$ have a common root, then $\lambda=$
(a) 0
(b) -1
(c) $0,-1$
(d) 2,-1
80. If the equation $x^{2}+\lambda x+\mu=0$ has equal roots and one root of the equation $x^{2}+\lambda x-12=0$ is 2 , then $(\lambda, \mu)=$
(a) $(4,4)$
(b) $(-4,4)$
(c) $(4,-4)$
(d) $(-4,-4)$
81. If $1+\cos \alpha+\cos ^{2} \alpha+\ldots \ldots . . \infty=2-\sqrt{2,}$ then α, ($0<\alpha<\pi$) is
(a) $\pi / 8$
(b) $\pi / 6$
(c) $\pi / 4$
(d) $3 \pi / 4$
82. The first term of an infinite geometric progression is x and its sum is 5 . Then
(a) $0 \leq x \leq 10$
(b) $0<x<10$
(c) $-10<x<0$
(d) $x>10$
83. If a, b, c are in H.P., then the value of $\left(\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\right)\left(\frac{1}{c}+\frac{1}{a}-\frac{1}{b}\right)$, is
(a) $\frac{2}{\mathrm{bc}}+\frac{1}{\mathrm{~b}^{2}}$
(b) $\frac{3}{c^{2}}+\frac{2}{c a}$
(c) $\frac{3}{\mathrm{~b}^{2}}-\frac{2}{\mathrm{ab}}$
(d) None of these
84. If the length of tangent drawn from the point $(5,3)$ to the circle $x^{2}+y^{2}+2 x+k y+17=0$ be 7 , then $k=$
(a) 4
(b) -4
(c) -6
(d) $13 / 2$
85. The line $\mid x+m y+n=0$ will be a tangent to the circle $x^{2}+y^{2}=a^{2}$ iff
(a) $n^{2}\left(1^{2}+m^{2}\right)=a^{2}$
(b) $a^{2}\left(l^{2}+m^{2}\right)=n^{2}$
(c) $n(l+m)=a$
(d) $a(l+m)=n$
86. If \mathbf{a} and \mathbf{b} are P.V. of two points A and B and C divides $A B$ in ratio $2: 1$, then P.V. of C is
(a) $\frac{\mathbf{a}+2 \boldsymbol{b}}{3}$
(b) $\frac{2 \mathbf{a}+\mathbf{b}}{3}$
(c) $\frac{\mathbf{a}+2}{3}$
(d) $\frac{\mathbf{a}+\mathbf{b}}{2}$
87. If A, B, C are the vertices of a triangle whose position vectors are $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and G is the centroid of the $\triangle A B C$, then $\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}$ is
(a) 0
(b) $\vec{A}+\vec{B}+\vec{C}$
(c) $\frac{\mathbf{a}+\mathbf{b}+\mathbf{c}}{3}$
(d) $\frac{\mathbf{a}+\mathbf{b}-\mathbf{c}}{3}$
88. If O is origin and C is the mid point of $A(2,-1)$ and $B(-4,3)$. Then value of $\overrightarrow{O C}$ is
(a) $\mathbf{i}+\mathbf{j}$
(b) $\mathbf{i}-\mathbf{j}$
(c) $-\mathbf{i}+\mathbf{j}$
(d) $-\mathbf{i}-\mathbf{j}$
89. If $A B C D E F$ is regular hexagon, then $\overrightarrow{A D}+\overrightarrow{E B}+\overrightarrow{F C}=$
(a) 0
(b) $2 \overrightarrow{A B}$
(c) $3 \overrightarrow{A B}$
(d) $4 \overrightarrow{A B}$
90. If position vectors of a point A is $\mathbf{a}+2 \mathbf{b}$ and \mathbf{a} divides $A B$ in the ratio $2: 3$, then the position vector of B is
(a) $2 \mathbf{a}-\mathbf{b}$
(b) $\mathbf{b}-2 \mathbf{a}$
(c) $\mathbf{a}-\mathbf{3} \mathbf{b}$
(d) b
91. If \mathbf{a} and \mathbf{b} are two non-zero vectors, then the component of \mathbf{b} along \mathbf{a} is
(a) $\frac{(\mathbf{a} \cdot \mathbf{b}) \mathbf{a}}{\mathbf{b} \cdot \mathbf{b}}$
(b) $\frac{(\mathbf{a} \cdot \mathbf{b}) \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}}$
(c) $\frac{(\mathbf{a} \cdot \mathbf{b}) \mathbf{b}}{\mathbf{a} \cdot \mathbf{b}}$
(d) $\frac{(\mathbf{a} \cdot \mathbf{b}) \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}$
92. A vector of magnitude 14 lies in the xy-plane and makes an angle of 60° with x-axis. The components of the vector in the direction of x-axis and y-axis are
(a) $7,7 \sqrt{3}$
(b) $7 \sqrt{3}, 7$
(c) $14 \sqrt{3}, 14 / \sqrt{3}$
(d) $14 / \sqrt{3}, 14 \sqrt{3}$
93. If $\mathbf{a}=4 \mathbf{i}+6 \mathbf{j}$ and $\mathbf{b}=3 \mathbf{j}+4 \mathbf{k}$, then the component of \mathbf{a} along \mathbf{b} is
(a) $\frac{18}{10 \sqrt{3}}(3 \mathbf{j}+4 \mathbf{k})$
(b) $\frac{18}{25}(3 \mathbf{j}+4 \mathbf{k})$
(c) $\frac{18}{\sqrt{3}}(3 \mathbf{j}+4 \mathbf{k})$
(d) $(3 \mathbf{j}+4 \mathbf{k})$
94. Let $\mathbf{b}=3 \mathbf{j}+4 \mathbf{k}, \mathbf{a}=\mathbf{i}+\mathbf{j}$ and let \mathbf{b}_{1} and \mathbf{b}_{2} be component vectors of \mathbf{b} parallel and perpendicular to a. If $\mathbf{b}_{1}=\frac{3}{2} \mathbf{i}+\frac{3}{2} \mathbf{j}$, then $\mathbf{b}_{2}=$
(a) $\frac{3}{2} \mathbf{i}+\frac{3}{2} \mathbf{j}+4 \mathbf{k}$
(b) $-\frac{3}{2} \mathbf{i}+\frac{3}{2} \mathbf{j}+4 \mathbf{k}$
(c) $-\frac{3}{2} \mathbf{i}+\frac{3}{2} \mathbf{j}$
(d) None of these
95. A letter is known to have come either from LONDON or CLIFTON; on the postmark only the two consecutive letters ON are legible. The probability that it came from LONDON is
(a) $\frac{5}{17}$
(b) $\frac{12}{17}$
(c) $\frac{17}{30}$
(d) $\frac{3}{5}$
96. Let $0<P(A)<1, \quad 0<P(B)<1 \quad$ and $\quad P(A \cup B)=$ $P(A)+P(B)-P(A) P(B)$. Then
(a) $P(B / A)=P(B)-P(A)$
(b) $P\left(A^{c} \cup B^{c}\right)=P\left(A^{c}\right)+P\left(B^{c}\right)$
(c) $P(A \cup B)^{c}=P\left(A^{c}\right) P\left(B^{c}\right)$
(d) $P(A / B)=P(A)$
97. For a biased die the probabilities for different faces to turn up are given below

Face :	1	2	3	4	5	6
Probability :	0.1	0.32	0.21	0.15	0.05	0.17

The die is tossed and you are told that either face 1 or 2 has turned up. Then the probability that it is face 1 , is
(a) $\frac{5}{21}$
(b) $\frac{5}{22}$
(c) $\frac{4}{21}$
(d) None of these
98. In a certain town, 40% of the people have brown hair, 25% have brown eyes and 15% have both brown hair and brown eyes. If a person selected at random from the town, has brown hair, the probability that he also has brown eyes, is
(a) $\frac{1}{5}$
(b) $\frac{3}{8}$
(c) $\frac{1}{3}$
(d) $\frac{2}{3}$
99. There are 3 bags which are known to contain 2 white and 3 black balls; 4 white and 1 black balls and 3 white and 7 black balls respectively. A ball is drawn at random from one of the bags and found to be a black ball. Then the probability that it was drawn from the bag containing the most black balls is
(a) $\frac{7}{15}$
(b) $\frac{5}{19}$
(c) $\frac{3}{4}$
(d) None of these
100. In an entrance test there are multiple choice questions. There are four possible answers to each question of which one is correct. The probability that a student knows the answer to a question is 90%. If he gets the correct answer to a question, then the probability that he was guessing, is
(a) $\frac{37}{40}$
(b) $\frac{1}{37}$
(c) $\frac{36}{37}$
(d) $\frac{1}{9}$
101. The interval for which $\sin ^{-1} \sqrt{x}+\cos ^{-1} \sqrt{x}=\frac{\pi}{2}$ holds
(a) $[0, \infty)$
(b) $[0,3]$
(c) $[0,1]$
(d) $[0,2]$
102. Function $\sin ^{-1} \sqrt{x}$ is defined in the interval
(a) $(-1,1)$
(b) $[0,1]$
(c) $[-1,0]$
(d) $(-1,2)$
103. $\lim _{x \rightarrow 0} \frac{e^{x^{2}}-\cos x}{x^{2}}=$
(a) $\frac{3}{2}$
(b) $-\frac{1}{2}$
(c) 1
(d) None of these
104. $\lim _{x \rightarrow 0} \frac{\log (a+x)-\log a}{x}+k \lim _{x \rightarrow e} \frac{\log x-1}{x-e}=1$, then
(a) $k=e\left(1-\frac{1}{a}\right)$
(b) $k=e(1+a)$
(c) $k=e(2-a)$
(d) The equality is not possible
105. Which of the following is not true
(a) Every differentiable function is continuous
(b) If derivative of a function is zero at all points, then the function is constant
(c) If a function has maximum or minima at a point, then the function is differentiable at that point and its derivative is zero
(d) If a function is constant, then its derivative is zero at all points
106. For the function $f(x)=\left\{\begin{array}{ll}\frac{e^{1 / x}-1}{e^{1 / x}+1}, & x \neq 0 \\ 0 & , x=0\end{array}\right.$, which of the following is correct
(a) $\lim _{x \rightarrow 0} f(x)$ does not exist
(b) $f(x)$ is continuous at $x=0$
(c) $\lim _{x \rightarrow 0} f(x)=1$
(d) $\lim _{x \rightarrow 0} f(x)$ exists but $f(x)$ is not continuous at $x=0$
107. The function 'f' is defined by $f(x)=2 x-1$, if $x>2$, $f(x)=k$ if $x=2$ and $x^{2}-1$, if $x<2$ is continuous, then the value of k is equal to
(a) 2
(b) 3
(c) 4
(d) -3
108. A ray of light coming from the point $(1,2)$ is reflected at a point A on the x-axis and then passes through the point $(5,3)$. The coordinates of the point A are
(a) $(13 / 5,0)$
(b) $(5 / 13,0)$
(c) $(-7,0)$
(d) None of these
109. If the co-ordinates of the middle point of the portion of a line intercepted between coordinate axes $(3,2)$, then the equation of the line will be
(a) $2 x+3 y=12$
(b) $3 x+2 y=12$
(c) $4 x-3 y=6$
(d) $5 x-2 y=10$
110. A line through $A(-5,-4)$ meets the lines $x+3 y+2=0, \quad 2 x+y+4=0$ and $x-y-5=0$ at B, C and D respectively. If $\left(\frac{15}{A B}\right)^{2}+\left(\frac{10}{A C}\right)^{2}=\left(\frac{6}{A D}\right)^{2}$, then the equation of the line is
(a) $2 x+3 y+22=0$
(b) $5 x-4 y+7=0$
(c) $3 x-2 y+3=0$
(d) None of these
111. If $D_{p}=\left|\begin{array}{ccc}p & 15 & 8 \\ p^{2} & 35 & 9 \\ p^{3} & 25 & 10\end{array}\right|$, then $D_{1}+D_{2}+D_{3}+D_{4}+D_{5}=$
(a) 0
(b) 25
(c) 625
(d) None of these
112. The value of $\left|\begin{array}{ccc}a & a+b & a+2 b \\ a+2 b & a & a+b \\ a+b & a+2 b & a\end{array}\right|$ is equal to
(a) $9 a^{2}(a+b)$
(b) $9 b^{2}(a+b)$
(c) $a^{2}(a+b)$
(d) $\mathrm{b}^{2}(\mathrm{a}+\mathrm{b})$
113. If a, b, c are different and $\left|\begin{array}{lll}a & a^{2} & a^{3}-1 \\ b & b^{2} & b^{3}-1 \\ c & c^{2} & c^{3}-1\end{array}\right|=0$, then
(a) $a+b+c=0$
(b) $a b c=1$
(c) $a+b+c=1$
(c) $\mathrm{ab}+\mathrm{bc}+\mathrm{ca}=0$
114. The identity element in the group $M=\left\{\left.\left(\begin{array}{ll}x & x \\ x & x\end{array}\right) \right\rvert\, x \in R ; x \neq 0\right\}$ with respect to matrix multiplication is
(a) $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$
(b) $\frac{1}{2}\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$
(c) $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
(d) $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
115. If $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ and $\mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then which one of the following holds for all $n \geq 1$, (by the principal of mathematical induction)
(a) $A^{n}=n A+(n-1) I$
(b) $A^{n}=2^{n-1} A+(n-1)$ I
(c) $A^{n}=n A-(n-1) \mid$
(d) $A^{n}=2^{n-1} A-(n-1) \mid$
116. The new coordinates of a point $(4,5)$, when the origin is shifted to the point $(1,-2)$ are
(a) $(5,3)$
(b) $(3,5)$
(c) $(3,7)$
(d) None of these
117. Without changing the direction of coordinate axes, origin is transferred to (h, k), so that the linear (one degree) terms in the equation $x^{2}+y^{2}-4 x+6 y-7$ $=0$ are eliminated. Then the point (h, k) is
(a) $(3,2)$
(b) $(-3,2)$
(c) $(2,-3)$
(d) None of these
118. The equation of the locus of a point whose distance from $(a, 0)$ is equal to its distance from y-axis, is
(a) $y^{2}-2 a x=a^{2}$
(b) $y^{2}-2 a x+a^{2}=0$
(c) $y^{2}+2 a x+a^{2}=0$
(d) $y^{2}+2 a x=a^{2}$
119. Two points A and B have coordinates $(1,0)$ and $(-1$, 0) respectively and Q is a point which satisfies the relation $A Q-B Q= \pm 1$. The locus of Q is
(a) $12 x^{2}+4 y^{2}=3$
(b) $12 x^{2}-4 y^{2}=3$
(c) $12 x^{2}-4 y^{2}+3=0$
(d) $12 x^{2}+4 y^{2}+3=0$
120. The locus of a point P which moves in such a way that the segment OP, where 0 is the origin, has slope $\sqrt{3}$ is
(a) $x-\sqrt{3} y=0$
(b) $x+\sqrt{3} y=0$
(c) $\sqrt{3} x+y=0$
(d) $\sqrt{3} x-y=0$

* * *

