$\underbrace{1}$	www.tarainsti			om T <i>i</i>	TARA/NDA-NA/Mathematics/07		
1.	Given the sets $A = \{1, 2, 3\}$ then $A \cup (B \cap C)$ is	$B = \{3,4\}, C = \{4, 5, 6\},\$	9.	If the coefficient	of x^7 in $\left(ax^2 + \right)$	$\left(\frac{1}{bx}\right)^{11}$ is equal to the	
	(a) {3} (c) {1, 2, 4, 5}	 (b) {1, 2, 3, 4} (d) {1, 2, 3, 4, 5, 6} 		coefficient of x^{-7}	$\ln\left(ax-\frac{1}{bx^2}\right)^{11}$, then <i>ab</i> =	
2.	If A and B are any two set to	is, then $A \cup (A \cap B)$ is equal		(a) 1 (c) 2	(b) 1 (d) 3	/2	
	(c) A^c	(d) B^c	10.	If the coefficient	of <i>x</i> in the expan	nsion of $\left(x^2 + \frac{k}{x}\right)$ is	
3.	If A and B are two given equal to (a) A	the $A \cap (A \cap B)^c$ is (b) B		270, then <i>k</i> = (a) 1 (c) 3	(b) 2 (d) 4		
4.	(c) ϕ If the sets A and B are defi	(d) $A \cap B^c$ ned as	11.	$\frac{d}{dx}\left(\tan^{-1}\frac{\cos x}{1+\sin x}\right)$	$\left(\frac{1}{c}\right) =$		
	$A = \{(x, y) : y = \frac{1}{x}, 0 \neq x \in R\}$ $B = \{(x, y) : y = -x, x \in R\}, \text{ then}$			(a) $-\frac{1}{2}$ (c) -1	(b) (d) 1	2	
	(a) $A \cap B = A$ (c) $A \cap B = \phi$	(b) $A \cap B = B$ (d) None of these	12.	$\frac{d}{dx}[\cos(1-x^2)^2] =$	=	$4 \cdot (1 \cdot 1^2) = (1 \cdot 1^2)^2$	
5.	Let $A = [x : x \in R, x < 1];$ $A \cup B = R - D$, then the set	$B = [x : x \in R, x - 1 \ge 1]$ and D is	12	(a) $-2x(1-x^2)\sin^2 d(x^2\sin^2 1) =$	$(1-x^2)^2$ (d) -	$-2(1-x^2)\sin(1-x^2)^2$	
٢	 (a) [x:1< x≤2] (c) [x:1≤ x≤2] Let <i>B</i> be a reflexive relative 	(b) $[x:1 \le x < 2]$ (d) None of these	13.	$\frac{dx}{dx}\left(x - \frac{3\pi^2}{x}\right)^{-1}$ (a) $\cos\left(\frac{1}{x}\right) + 2xs$	$\sin\left(\frac{1}{x}\right)$ (b) 2	$2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right)$	
0.	identity relation on A. The (a) $R \subset I$	(b) $I \subset R$		(c) $\cos\left(\frac{1}{x}\right) - 2xs$	$\sin\left(\frac{1}{x}\right)$ (d) N	lone of these	
7.	(c) $R = I$ Let $A = \{1, 2, 3, 4\}$ and by $R = \{(1, 1), (2, 2), (3, 4)\}$	 (d) None of these <i>R</i> be a relation in <i>A</i> given 3), (4, 4), (1, 2), (2, 1), (3, 	14.	If $y = \cos(\sin x^2)$, t	then at $x = \sqrt{\frac{\pi}{2}}$,	$\frac{dy}{dx} =$	
	1), (1, 3)}. Then <i>R</i> is (a) Reflexive			(a) $-2\sqrt{\frac{\pi}{2}}$	(d) 2 (d) 0		
	(b) Symmetric(c) Transitive		15.	If $y = \sin^{-1}(x\sqrt{1-x})$ (a) $\frac{-2x}{x} + \frac{1}{x}$	$\frac{1}{x} + \sqrt{x}\sqrt{1 - x^2}$, t	hen $\frac{dy}{dx} =$	
8.	 an equivalence relation An integer <i>m</i> is said to be related to another integer <i>n</i> if <i>m</i> is a multiple of <i>n</i>. Then the relation is 			(c) $\frac{1}{\sqrt{1-x^2}} + \frac{2\sqrt{1-x^2}}{2\sqrt{1-x^2}} + \frac{1}{2\sqrt{1-x^2}} +$	$\frac{1}{\sqrt{x-x^2}}$ (d) N	$\sqrt{1-x^2}$ $2\sqrt{x-x^2}$	
	(a) Reflexive and symmetric(b) Reflexive and transitive(c) Symmetric and transiti	ic e ve	16.	If $x^3 + 8xy + y^3 =$	= 64 , then $\frac{dy}{dx}$ =		
	(d) Equivalence relation	*•		(a) $-\frac{3x^2+8y}{8x+3y^2}$	(b) $\frac{2}{8}$	$\frac{3x^2 + 8y}{3x + 3y^2}$	
				(c) $\frac{3x+8y^2}{8x^2+3y}$	(d) N	lone of these	

17. If $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$, then $\frac{dy}{dx} =$ (a) $-\frac{ax+hy+g}{hx-by+f}$ (b) $\frac{ax+hy+g}{hx-by+f}$ (c) $\frac{ax-hy-g}{hx-by-f}$ **18.** $\cos^{-1}\left(\cos\frac{7\pi}{6}\right) =$ (a) $\frac{7\pi}{6}$ (c) $\frac{\pi}{6}$ 19. The value of s (a) x (c) 1 **20.** $\sin^{-1} \frac{\sqrt{x}}{\sqrt{x+2}}$ is (a) $\cos^{-1} \sqrt{\frac{x}{2}}$ (c) $\tan^{-1} \sqrt{\frac{x}{2}}$ **21.** If $\tan \theta = \frac{-4}{2}$, the second secon (a) - 4/5 but r (c) 4/5 but no **22.** If $\sin \theta = -\frac{1}{\sqrt{2}}$ quadrant (a) First (b) Second (c) Third (d) Fourth **23.** If $\sin\theta = \frac{-4}{5}$ and θ lies in the third quadrant, then $\cos\frac{\theta}{2} =$ (b) $-\frac{1}{\sqrt{5}}$ (c) $\sqrt{\frac{2}{2}}$ (d) $-\sqrt{\frac{2}{5}}$ **24.** If $sin(\alpha - \beta) = \frac{1}{2}$ and $cos(\alpha + \beta) = \frac{1}{2}$, where α and β are positive acute angles, then (a) $\alpha = 45^{\circ}, \beta = 15^{\circ}$ (b) $\alpha = 15^{\circ}, \beta = 45^{\circ}$ (c) $\alpha = 60^{\circ}, \beta = 15^{\circ}$ (d) None of these

25. If $\tan \theta = -\frac{1}{\sqrt{10}}$ and θ lies in the fourth quadrant, then $\cos\theta =$ (a) 1/√11 (b) $-1/\sqrt{11}$ (c) $\sqrt{\frac{10}{11}}$ (d) $-\sqrt{\frac{10}{11}}$ **26.** If $x + y + z = 180^{\circ}$, then $\cos 2x + \cos 2y - \cos 2z$ is equal to (a) $4 \sin x \cdot \sin y \cdot \sin z$ (b) $1 - 4 \sin x \cdot \sin y \cdot \cos z$ (c) $4 \sin x \cdot \sin y \cdot \sin z - 1$ (d) cos A. cos B. cos C **27.** If $\alpha + \beta + \gamma = 2\pi$, then (a) $\tan \frac{\alpha}{2} + \tan \frac{\beta}{2} + \tan \frac{\gamma}{2} = \tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$ (b) $\tan \frac{\alpha}{2} \tan \frac{\beta}{2} + \tan \frac{\beta}{2} \tan \frac{\gamma}{2} + \tan \frac{\gamma}{2} \tan \frac{\alpha}{2} = 1$ (c) $\tan \frac{\alpha}{2} + \tan \frac{\beta}{2} + \tan \frac{\gamma}{2} = -\tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$ (d) None of these **28.** If $A + B + C = \pi$, then $\cos 2A + \cos 2B + \cos 2C =$ (a) $1 + 4 \cos A \cos B \sin C$ (b) $-1 + 4 \sin A \sin B \cos C$ (c) $-1 - 4 \cos A \cos B \cos C$ (d) None of these **29.** If $A + B + C = 180^{\circ}$, then $\frac{\sin 2A + \sin 2B + \sin 2C}{\cos A + \cos B + \cos C - 1}$ (a) $8\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$ (b) $8\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}$ (c) $8\sin\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}$ (d) $8\cos\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$ 30. A, B, C are the angles of a triangle, then $\sin^2 A + \sin^2 B + \sin^2 C - 2\cos A\cos B\cos C =$ (a) 1 (b) 2 (d) 4 (c) 3 **31.** Forces of 1, 2 *unit* act along the lines x = 0 and y = 0. The equation of the line of action of the resultant is (a) y - 2x = 0(b) 2y - x = 0(c) y + x = 0(d) y - x = 032. If N is resolved in two components such that first is twice of other, the components are (a) $5N, 5\sqrt{2}N$ (b) $10N, 10\sqrt{2}N$ (c) $\frac{N}{\sqrt{5}}, \frac{2N}{\sqrt{5}}$ (d) None of these

TARA INSTITUTE

(d) None of these
(b)
$$\frac{5\pi}{6}$$

(d) None of these
(d) None of these
(d) None of these
(b) $\frac{\pi}{2}$
(c) None of these
(c) $\cosh^{-1}\sqrt{\frac{x}{a}}$
(c) $(\cosh^{-1}\sqrt{\frac{x}{a}})$
(c) $(\cosh^{-1}\sqrt$

www.tarainstitute.in

TARA/NDA-NA/Mathematics/07

www.tarainstitute.com

TARA/NDA-NA/Mathematics/07

- **33.** *O* is the circumcentre of $\triangle ABC$. If the forces *P*, *Q* and *R* acting along *OA*, *OB*, and *OC* are in equilibrium then P:Q:R is
 - (a) $\sin A : \sin B : \sin C$
 - (b) $\cos A : \cos B : \cos C$
 - (c) $a\cos A : b\cos B : c\cos C$
 - (d) $a \sec A : b \sec B : c \sec C$
- **34.** Three forces *P*, *Q* and *R* acting on a particle are in equilibrium. If the angle between *P* and *Q* is double the angle between *P* and *R*, then *P* is equal to

(a)
$$\frac{Q^2 + R^2}{R}$$
 (b) $\frac{Q^2 - R^2}{Q}$
(c) $\frac{Q^2 - R^2}{R}$ (d) $\frac{Q^2 + R^2}{Q}$

- **35.** Three forces *P*, *Q*, *R* are acting at a point in a plane. The angle between *P*, *Q* and *Q*, *R* are 150° and 120° respectively, then for equilibrium; forces *P*, *Q*, *R* are in the ratio
 - (a) 1:2:3 (b) $1:2:3^{1/2}$
 - (c) 3:2:1 (d) $(3)^{1/2}:2:1$
- **36.** A couple is of moment *G* and the force forming the couple is *P*. If *P* is turned through a right angle, the moment of the couple thus formed is *H*. If instead, the force *P* are turned an angle α , then the moment of couple becomes
 - (a) $G \sin \alpha H \cos \alpha$ (b) $H \cos \alpha + G \sin \alpha$

(c) $G \cos \alpha + H \sin \alpha$ (d) $H \sin \alpha - G \cos \alpha$

- **37.** The resultant of the forces 4, 3, 4 and 3 *unit* acting along the lines *AB*, *BC*, *CD* and *DA* of a square *ABCD* of side '*a*' respectively is
 - (a) A force $5\sqrt{2}$ through the centre of the square
 - (b) A couple of moment 7a
 - (c) A null force
 - (d) None of these
- **38.** For which interval, the function $\frac{x^2 3x}{x 1}$ satisfies all

the conditions of Rolle's theorem

- (a) [0, 3] (b) [-3, 0]
- (c) [1.5, 3] (d) For no interval
- **39.** For the function $f(x) = e^x$, a = 0, b = 1, the value of *c* in mean value theorem will be
 - (a) $\log x$ (b) $\log(e-1)$
 - (c) 0 (d) 1
- **40.** Rolle's theorem is not applicable to the function f(x) = |x| defined on [-1, 1] because

(a) f is not continuous on [-1, 1]

- (b) f is not differentiable on (-1,1)
- (c) $f(-1) \neq f(1)$
- (d) $f(-1) = f(1) \neq 0$
- **41.** The direction cosines of a line equally inclined to three mutually perpendicular lines having direction cosines as l_1 , m_1 , n_1 ; l_2 , m_2 , n_2 and l_3 , m_3 , n_3 are

(a) $l_1 + l_2 + l_3$, $m_1 + m_2 + m_3$, $n_1 + n_2 + n_3$ (b) $\frac{l_1 + l_2 + l_3}{\sqrt{3}}$, $\frac{m_1 + m_2 + m_3}{\sqrt{3}}$, $\frac{n_1 + n_2 + n_3}{\sqrt{3}}$ (c) $\frac{l_1 + l_2 + l_3}{3}$, $\frac{m_1 + m_2 + m_3}{3}$, $\frac{n_1 + n_2 + n_3}{3}$

(d) None of these

- **42.** A point (*x*, *y*, *z*) moves parallel to *x*-axis. Which of the three variable *x*, *y*, *z* remain fixed
 - (a) x (b) y and z (c) x and y (d) z and x
 - (c) x and y (d) z and x
- **43.** If the direction cosines of a line are $\left(\frac{1}{c}, \frac{1}{c}, \frac{1}{c}\right)$, then
- (a) c > 0 (b) $c = \pm \sqrt{3}$ (c) 0 < c < 1 (d) c > 2**44.** The plane *xoz* divides the join of (1, -1, 5) and (2,
 - 3, 4) in the ratio $\lambda : 1$, then λ is (a) -3
 (b) 3 (c) $-\frac{1}{3}$ (d) $\frac{1}{3}$
- **45.** The co-ordinates of a point *P* are (3, 12, 4) with respect to origin *O*, then the direction cosines of *OP* are

(a) 3, 12, 4
(b)
$$\frac{1}{4}, \frac{1}{3}, \frac{1}{2}$$

(c) $\frac{3}{\sqrt{13}}, \frac{1}{\sqrt{13}}, \frac{2}{\sqrt{13}}$
(d) $\frac{3}{13}, \frac{12}{13}, \frac{4}{13}$

46. If the planes x + 2y + kz = 0 and 2x + y - 2z = 0 are at right angles, then the value of k is

(a)
$$-\frac{1}{2}$$
 (b) $\frac{1}{2}$
(c) -2 (d) 2

47. If z_1, z_2, z_3 be three non-zero complex number, such that $z_2 \neq z_1, a = |z_1|, b = |z_2|$ and $c = |z_3|$ suppose

that
$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 0$$
, then $arg\left(\frac{z_3}{z_2}\right)$ is equal to

(a)
$$arg\left(\frac{z_2 - z_1}{z_3 - z_1}\right)^2$$
 (b) $arg\left(\frac{z_2 - z_1}{z_3 - z_1}\right)$
(c) $arg\left(\frac{z_3 - z_1}{z_2 - z_1}\right)^2$ (d) $arg\left(\frac{z_3 - z_1}{z_2 - z_1}\right)$

ARA TARA

 $\left(3 \right)$

www.tarainstitute.in

TARA/NDA-NA/Mathematics/07

48. Let z and w be the two non-zero complex numbers such that |z|=|w| and $\arg z + \arg w = \pi$. Then z is equal to

(b) -w

- (a) w
- (c) \overline{w} (d) $-\overline{w}$
- **49.** If $|z 25i| \le 15$, then $|\max .amp(z) \min .amp(z)| =$

(a)
$$\cos^{-1}\left(\frac{3}{5}\right)$$
 (b) $\pi - 2\cos^{-1}\left(\frac{3}{5}\right)$
(c) $\frac{\pi}{2} + \cos^{-1}\left(\frac{3}{5}\right)$ (d) $\sin^{-1}\left(\frac{3}{5}\right) - \cos^{-1}\left(\frac{3}{5}\right)$

- **50.** If z_1, z_2 and z_3, z_4 are two pairs of conjugate complex numbers, then $arg\left(\frac{z_1}{z_4}\right) + arg\left(\frac{z_2}{z_3}\right)$ equals
 - (a) 0 (b) $\frac{\pi}{2}$ (c) $\frac{3\pi}{2}$ (d) π
- **51.** The differential equation of the family of parabolas with focus at the origin and the *x*-axis as axis is
 - (a) $y\left(\frac{dy}{dx}\right)^2 + 4x\frac{dy}{dx} = 4y$ (b) $-y\left(\frac{dy}{dx}\right)^2 = 2x\frac{dy}{dx} y$ (c) $y\left(\frac{dy}{dx}\right)^2 + y = 2xy\frac{dy}{dx}$ (d) $y\left(\frac{dy}{dx}\right)^2 + 2xy\frac{dy}{dx} + y = 0$
- **52.** The differential equation of the family of curves for which the length of the normal is equal to a constant *k*, is given by

(a)
$$y^2 \frac{dy}{dx} = k^2 - y^2$$
 (b) $\left(y \frac{dy}{dx}\right)^2 = k^2 - y^2$
(c) $y \left(\frac{dy}{dx}\right)^2 = k^2 + y^2$ (d) $\left(y \frac{dy}{dx}\right)^2 = k^2 + y^2$

- **53.** The solution of the differential equation $y - x \frac{dy}{dx} = a \left(y^2 + \frac{dy}{dx} \right)$ is
 - (a) y = c(x+a)(1+ay)(b) y = c(x+a)(1-ay)(c) y = c(x-a)(1+ay)(d) None of these
- 54. A particle moves in a straight line with a velocity given by $\frac{dx}{dt} = x + 1$ (x is the distance described). The time taken by a particle to traverse a distance of 99 metre is
 - (a) $\log_{10} e$ (b) $2 \log_e 10$
 - (c) $2 \log_{10} e$ (d) $\frac{1}{2} \log_{10} e$

- **55.** Solution of differential equation x dy y dx = 0 represents
 - (a) Rectangular hyperbola
 - (b) Straight line passing through origin
 - (c) Parabola whose vertex is at origin
 - (d) Circle whose centre is at origin
- 56. Integral curve satisfying $y = \frac{x^2 + y^2}{x^2 y^2}$, y(1) = 2 has the slope at the point (1, 0) of the curve, equal to (a) -5/3 (b) -1

(c) 1 (d) 5/3

57. How many numbers between 5000 and 10,000 can be formed using the digits 1, 2, 3, 4, 5, 6, 7, 8, 9 each digit appearing not more than once in each number

(a)
$$5 \times {}^{8}P_{3}$$
 (b) $5 \times {}^{8}C_{3}$

(c)
$$5! \times {}^{8}P_{3}$$
 (d) $5! \times {}^{8}C_{3}$

58. If x, y and r are positive integers, then

59. If the angle of elevation of the top of tower at a distance 500 m from its foot is 30° , then height of the tower is

(a)
$$\frac{1}{\sqrt{3}}$$
 (b) $\frac{500}{\sqrt{3}}$
(c) $\sqrt{3}$ (d) $\frac{1}{500}$

60. For a man, the angle of elevation of the highest point of the temple situated east of him is 60°. On walking 240 *metres* to north, the angle of elevation is reduced to 30°, then the height of the temple is

(a)
$$60\sqrt{6}m$$
 (b) $60m$

(c)
$$50\sqrt{3}m$$
 (d) $30\sqrt{6}m$

61.
$$\int \frac{dx}{1 - \sin x} =$$
(a) $x + \cos x + c$
(b) $1 + \sin x + c$
(c) $\sec x - \tan x + c$
(d) $\sec x + \tan x + c$

62. If
$$\int (\sin 2x - \cos 2x) dx = \frac{1}{\sqrt{2}} \sin(2x - a) + b$$
, then

X + C

TARA

 $\begin{pmatrix} 4 \end{pmatrix}$

www.tarainstitute.com

TARA/NDA-NA/Mathematics/07

(a) $a = \frac{\pi}{4}, b = 0$ (b) $a = -\frac{\pi}{4}, b = 0$ (c) $a = \frac{5\pi}{4}$, b = any constant(d) $a = -\frac{5\pi}{4}$, b = any constant**63.** The area in the first quadrant between $x^2 + y^2 = \pi^2$ and $y = \sin x$ is (a) $\frac{(\pi^3 - 8)}{4}$ (b) $\frac{\pi^3}{4}$ (c) $\frac{(\pi^3 - 16)}{4}$ (d) $\frac{(\pi^3 - 8)}{2}$ **64.** The area bounded by the curves $y^2 - x = 0$ and $y - x^2 = 0$ is (a) $\frac{7}{3}$ (b) $\frac{1}{2}$ (c) $\frac{5}{5}$ (d) 1 **65.** If $\int_{-1}^{4} f(x) dx = 4$ and $\int_{2}^{4} (3 - f(x)) dx = 7$, then the value of $\int_{-1}^{-1} f(x) dx$ is (b) – 3 (a) 2 (c) - 5 (d) None of these **66.** The directrix of the parabola $x^2 - 4x - 8y + 12 = 0$ is (a) x = 1(b) y = 0(C) x = -1(d) y = -167. The equation of the parabola with focus (0, 0) and directrix x + y = 4 is (a) $x^2 + y^2 - 2xy + 8x + 8y - 16 = 0$ (b) $x^2 + y^2 - 2xy + 8x + 8y = 0$ (c) $x^2 + y^2 + 8x + 8y - 16 = 0$ (d) $x^2 - y^2 + 8x + 8y - 16 = 0$ 68. The eccentricity of the curve represented by the equation $x^{2} + 2y^{2} - 2x + 3y + 2 = 0$ is (a) 0 (b) 1/2 (c) $1/\sqrt{2}$ (d) $\sqrt{2}$ 69. For the ellipse $25x^2 + 9y^2 - 150x - 90y + 225 = 0$ the eccentricity e = (a) 2/5 (b) 3/5 (c) 4/5 (d) 1/5

5

70. The equation of the tangent parallel to y - x + 5 = 0drawn to $\frac{x^2}{2} - \frac{y^2}{2} = 1$ is (a) x - y - 1 = 0(b) x - y + 2 = 0(c) x + y - 1 = 0(d) x + y + 2 = 0**71.** Let *E* be the ellipse $\frac{x^2}{\alpha} + \frac{y^2}{\lambda} = 1$ and *C* be the circle $x^2 + y^2 = 9$. Let P and Q be the points (1, 2) and (2, 1) respectively. Then (a) Q lies inside C but outside E (b) Q lies outside both C and E (c) P lies inside both C and E (d) P lies inside C but outside E **72.** If α , β , γ are roots of equation $x^3 + ax^2 + bx + c = 0$, then $\alpha^{-1} + \beta^{-1} + \gamma^{-1} =$ (a) a/c (b) - b/c (c) b/a (d) c/a **73.** If $\frac{2x}{2x^2+5x+2} > \frac{1}{x+1}$, then (a) -2 > x > -1(b) $-2 \ge x \ge -1$ (c) -2 < x < -1(d) $-2 < x \le -1$ **74.** If a < 0 then the inequality $ax^2 - 2x + 4 > 0$ has the solution represented by (a) $\frac{1+\sqrt{1-4a}}{2} > x > \frac{1-\sqrt{1-4a}}{2}$ (b) $x < \frac{1 - \sqrt{1 - 4a}}{a}$ (c) *x* < 2 (d) $2 > x > \frac{1 + \sqrt{1 - 4a}}{2}$ **75.** The two roots of an equation $x^3 - 9x^2 + 14x + 24 = 0$ are in the ratio 3 : 2. The roots will be (a) 6, 4, -1 (b) 6, 4, 1 (c) - 6, 4, 1 (d) – 6, – 4, 1 **76.** If $x = \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots \dots \text{ to infinity}}}}$, then x =(a) $\frac{1+\sqrt{5}}{2}$ (b) $\frac{1-\sqrt{5}}{2}$ (c) $\frac{1\pm\sqrt{5}}{2}$ (d) None of these **77.** For the equation $|x^2| + |x| - 6 = 0$, the roots are (a) One and only one real number (b) Real with sum one (c) Real with sum zero (d) Real with product zero

6 www.tarainstitute.in 87. If A, B, C are the vertices of a triangle whose position **78.** If $ax^2 + bx + c = 0$, then x =vectors are **a**, **b**, **c** and G is the centroid of the (a) $\frac{b \pm \sqrt{b^2 - 4ac}}{2a}$ (b) $\frac{-b \pm \sqrt{b^2 - ac}}{2a}$ $\triangle ABC$, then $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC}$ is (c) $\frac{2c}{-b\pm\sqrt{b^2-4ac}}$ (a) **0** (b) $\vec{A} + \vec{B} + \vec{C}$ (d) None of these (d) $\frac{a+b-c}{3}$ (c) $\frac{\mathbf{a}+\mathbf{b}+\mathbf{c}}{3}$ **79.** If the equations $2x^2 + 3x + 5\lambda = 0$ and If O is origin and C is the mid point of A(2, -1) and 88. $x^{2} + 2x + 3\lambda = 0$ have a common root, then $\lambda =$ (a) 0 (b) -1 B(-4,3). Then value of \overrightarrow{OC} is (c) 0,-1 (d) 2,-1 (b) i - i (a) **i** + **j** (d) – i – j (C) – **i** + **j 80.** If the equation $x^2 + \lambda x + \mu = 0$ has equal roots and **89.** If ABCDEF is regular hexagon, then $\overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC} =$ one root of the equation $x^2 + \lambda x - 12 = 0$ is 2, then $(\lambda, \mu) =$ (b) $2\overrightarrow{AB}$ (a) 0 (a) (4, 4) (b) (-4,4) (c) 3 AB (d) 4 AB (c) (4,-4)(d) (-4,-4) If position vectors of a point A is **a** + 2**b** and **a** 90. divides AB in the ratio 2:3, then the position vector of **81.** If $1 + \cos \alpha + \cos^2 \alpha + \dots = 2 - \sqrt{2}$ then α. B is $(0 < \alpha < \pi)$ is (a) 2a - b (b) **b** - 2**a** (a) $\pi/8$ (b) $\pi/6$ (c) **a** - 3**b** (d) **b** (d) $3\pi/4$ (C) $\pi/4$ 91. If a and b are two non-zero vectors, then the 82. The first term of an infinite geometric progression is component of **b** along **a** is x and its sum is 5. Then (a) <u>(a</u>.b)a (a) $0 \le x \le 10$ (b) 0 < x < 10(b) $\frac{(\mathbf{a} \cdot \mathbf{b})\mathbf{b}}{\mathbf{a} \cdot \mathbf{a}}$ (c) -10 < x < 0(d) x > 10b.b **83.** If a, b, c are in H.P., then the value of (d) $(\underline{a}, \underline{b}) \underline{a}$ (a.b)b (c) a.b $\left(\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\right)\left(\frac{1}{c}+\frac{1}{a}-\frac{1}{b}\right)$, is 92. A vector of magnitude 14 lies in the xy-plane and (a) $\frac{2}{bc} + \frac{1}{b^2}$ (b) $\frac{3}{c^2} + \frac{2}{ca}$ makes an angle of 60° with x-axis. The components of the vector in the direction of x-axis and y-axis are (c) $\frac{3}{h^2} - \frac{2}{ah}$ (a) 7, $7\sqrt{3}$ (b) $7\sqrt{3}$, 7 (d) None of these (d) $14/\sqrt{3}$, $14\sqrt{3}$ (c) $14\sqrt{3}$, $14/\sqrt{3}$ 84. If the length of tangent drawn from the point (5, 3) to **93.** If $\mathbf{a} = 4\mathbf{i} + 6\mathbf{j}$ and $\mathbf{b} = 3\mathbf{j} + 4\mathbf{k}$, then the component of the circle $x^2 + y^2 + 2x + ky + 17 = 0$ be 7, then k =(b) - 4 a along b is (a) 4 (d) 13/2 (c) – 6 (a) $\frac{18}{10\sqrt{3}}(3\mathbf{j}+4\mathbf{k})$ (b) $\frac{18}{25}(3\mathbf{j}+4\mathbf{k})$ **85.** The line lx + my + n = 0 will be a tangent to the circle $x^{2} + y^{2} = a^{2}$ iff (c) $\frac{18}{\sqrt{2}}(3\mathbf{j}+4\mathbf{k})$ (d) $(3\mathbf{j}+4\mathbf{k})$ (a) $n^2(l^2 + m^2) = a^2$ (b) $a^2(l^2 + m^2) = n^2$ (c) n(l+m) = a(d) a(l+m) = n**94.** Let $\mathbf{b} = 3\mathbf{j} + 4\mathbf{k}$, $\mathbf{a} = \mathbf{i} + \mathbf{j}$ and let \mathbf{b}_1 and \mathbf{b}_2 be 86. If a and b are P.V. of two points A and B and C component vectors of **b** parallel and perpendicular to divides AB in ratio 2 : 1, then P.V. of C is **a**. If $\mathbf{b}_1 = \frac{3}{2}\mathbf{i} + \frac{3}{2}\mathbf{j}$, then $\mathbf{b}_2 =$ (a) $\frac{a+2b}{3}$ (b) $\frac{2a+b}{3}$ (a) $\frac{3}{2}\mathbf{i} + \frac{3}{2}\mathbf{j} + 4\mathbf{k}$ (b) $-\frac{3}{2}\mathbf{i} + \frac{3}{2}\mathbf{j} + 4\mathbf{k}$

TARA/NDA-NA/Mathematics/07

(c) $\frac{a+2}{2}$ (d) $\frac{a+b}{2}$

TARA INSTITUTE

(c) $-\frac{3}{2}i + \frac{3}{2}j$

(d) None of these

www.tarainstitute.com

TARA/NDA-NA/Mathematics/07

- 95. A letter is known to have come either from LONDON or CLIFTON; on the postmark only the two consecutive letters ON are legible. The probability that it came from LONDON is
 - (b) $\frac{12}{17}$ (a) $\frac{5}{17}$
 - (d) $\frac{3}{5}$
 - (c) $\frac{17}{30}$
- **96.** Let 0 < P(A) < 1, 0 < P(B) < 1and $P(A \cup B) =$ P(A) + P(B) - P(A)P(B). Then
 - (a) P(B/A) = P(B) P(A)
 - (b) $P(A^{c} \cup B^{c}) = P(A^{c}) + P(B^{c})$
 - (c) $P(A \cup B)^c = P(A^c) P(B^c)$
 - (d) P(A / B) = P(A)
- 97. For a biased die the probabilities for different faces to turn up are given below

Face :	1	2	3	4	5	6
Probability :	0.1	0.32	0.21	0.15	0.05	0.17

The die is tossed and you are told that either face 1 or 2 has turned up. Then the probability that it is face 1, is

(a) $\frac{5}{21}$ (b) $\frac{5}{22}$ (c) $\frac{4}{21}$

(d) None of these

98. In a certain town, 40% of the people have brown hair, 25% have brown eyes and 15% have both brown hair and brown eyes. If a person selected at random from the town, has brown hair, the probability that he also has brown eyes, is

(a)
$$\frac{1}{5}$$
 (b) $\frac{3}{8}$
(c) $\frac{1}{3}$ (d) $\frac{2}{3}$

- 99. There are 3 bags which are known to contain 2 white and 3 black balls; 4 white and 1 black balls and 3 white and 7 black balls respectively. A ball is drawn at random from one of the bags and found to be a black ball. Then the probability that it was drawn from the bag containing the most black balls is
 - (a) $\frac{7}{15}$ (b) $\frac{5}{19}$ (d) None of these (c)

100. In an entrance test there are multiple choice questions. There are four possible answers to each question of which one is correct. The probability that a student knows the answer to a question is 90%. If he gets the correct answer to a question, then the probability that he was guessing, is

(a)
$$\frac{37}{40}$$
 (b) $\frac{1}{37}$
(c) $\frac{36}{37}$ (d) $\frac{1}{9}$
101. The interval for which $\sin^{-1}\sqrt{x} + \cos^{-1}\sqrt{x} = \frac{\pi}{2}$ holds
(a) $[0, \infty)$ (b) $[0, 3]$
(c) $[0, 1]$ (d) $[0, 2]$
102. Function $\sin^{-1}\sqrt{x}$ is defined in the interval
(a) $(-1, 1)$ (b) $[0, 1]$
(c) $[-1, 0]$ (d) $(-1, 2)$
103. $\lim_{x\to 0} \frac{e^{x^2} - \cos x}{x^2} =$
(a) $\frac{3}{2}$ (b) $-\frac{1}{2}$
(c) 1 (d) None of these
104. $\lim_{x\to 0} \frac{\log(a+x) - \log a}{x} + k \lim_{x\to e} \frac{\log x - 1}{x - e} = 1$, then
(a) $k = e(1 - \frac{1}{a})$
(b) $k = e(1 + a)$
(c) $k = e(2 - a)$
(d) The equality is not possible
105. Which of the following is not true
(a) Every differentiable function is continuous

- (b) If derivative of a function is zero at all points, then the function is constant
- (c) If a function has maximum or minima at a point, then the function is differentiable at that point and its derivative is zero
- (d) If a function is constant, then its derivative is zero at all points (1/4

106. For the function
$$f(x) = \begin{cases} \frac{e^{1/x} - 1}{e^{1/x} + 1}, & x \neq 0\\ 0, & x = 0 \end{cases}$$
, which of the

following is correct

- $\lim_{x \to \infty} f(x)$ does not exist (a)
- (b) f(x) is continuous at x = 0
- $\lim_{x \to 0} f(x) = 1$ (c)
- (d) $\lim_{x \to 0} f(x)$ exists but f(x) is not continuous at x = 0

INSTITUTE

107. The function 'f is defined by f(x) = 2x - 1, if x > 2, f(x) = k if x = 2 and $x^2 - 1$, if x < 2 is continuous, then the value of k is equal to (a) 2 (b) 3 (c) 4 (d) -3 **108.** A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). The coordinates of the point A are (a) (13/5, 0)(b) (5/13,0) (c) (-7,0) (d) None of these **109.** If the co-ordinates of the middle point of the portion of a line intercepted between coordinate axes (3,2), then the equation of the line will be (a) 2x + 3y = 12(b) 3x + 2y = 12(c) 4x - 3y = 6(d) 5x - 2y = 10**110.** A line through A(-5, -4) meets the lines x+3y+2=0, 2x+y+4=0 and x-y-5=0 at B, C and *D* respectively. If $\left(\frac{15}{AB}\right)^2 + \left(\frac{10}{AC}\right)^2 = \left(\frac{6}{AD}\right)^2$, then the equation of the line is (a) 2x+3y+22=0(b) 5x - 4y + 7 = 0(c) 3x - 2y + 3 = 0(d) None of these p 15 8 **111.** If $D_p = \begin{vmatrix} \dot{p}^2 & 35 & 9 \\ p^3 & 25 & 10 \end{vmatrix}$, then $D_1 + D_2 + D_3 + D_4 + D_5 = 0$ (a) 0 (b) 25 (c) 625 (d) None of these a+b a+2bа **112.** The value of $\begin{vmatrix} a+2b \end{vmatrix}$ a a+b is equal to a+b a+2b a (b) $9b^2(a+b)$ (a) $9a^2(a+b)$ (d) $b^2(a+b)$ (c) $a^2(a+b)$ $a a^2 a^3 - 1$ **113.** If a, b, c are different and $\begin{vmatrix} b & b^2 & b^3 - 1 \end{vmatrix} = 0$, then $c c^2 c^3 - 1$ (a) a + b + c = 0(b) abc = 1(C) a + b + c = 1(c) ab + bc + ca = 0element **114**. The identity in the group $M = \left\{ \begin{pmatrix} x & x \\ x & x \end{pmatrix} | x \in R; x \neq 0 \right\}$ with respect to matrix

- multiplication is (a) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ (b) $\frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- (c) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ (d) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

following holds for all $n \ge 1$, (by the principal of mathematical induction) (b) $A^n = 2^{n-1}A + (n-1)I$ (a) $A^n = nA + (n-1)I$ (d) $A^n = 2^{n-1}A - (n-1)I$ (c) $A^n = nA - (n-1)I$ 116. The new coordinates of a point (4, 5), when the origin is shifted to the point (1, -2) are (a) (5, 3) (b) (3, 5) (c) (3,7) (d) None of these **117.** Without changing the direction of coordinate axes, origin is transferred to (h, k), so that the linear (one degree) terms in the equation $x^2 + y^2 - 4x + 6y - 7$ =0 are eliminated. Then the point (h, k) is (a) (3, 2) (b) (-3,2) (d) None of these (c) (2, -3)118. The equation of the locus of a point whose distance from (a, 0) is equal to its distance from y-axis, is (a) $y^2 - 2ax = a^2$ (b) $y^2 - 2ax + a^2 = 0$ (d) $y^2 + 2ax = a^2$ (c) $y^2 + 2ax + a^2 = 0$

119. Two points A and B have coordinates (1, 0) and (-1, 0) respectively and Q is a point which satisfies the relation $AQ - BQ = \pm 1$. The locus of Q is

- (a) $12x^2 + 4y^2 = 3$ (b) $12x^2 - 4y^2 = 3$
- (c) $12x^2 4y^2 + 3 = 0$ (d) $12x^2 + 4y^2 + 3 = 0$
- **120.** The locus of a point *P* which moves in such a way that the segment OP, where O is the origin, has slope $\sqrt{3}$ is
 - (a) $x \sqrt{3}y = 0$ (b) $x + \sqrt{3}y = 0$ (c) $\sqrt{3}x + y = 0$ (d) $\sqrt{3}x - y = 0$

A RA

115. If $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then which one of the

www.tarains